3.36 \(\int \frac{\sin ^2(e+f x)}{a+b \sec ^2(e+f x)} \, dx\)

Optimal. Leaf size=76 \[ -\frac{\sqrt{b} \sqrt{a+b} \tan ^{-1}\left (\frac{\sqrt{b} \tan (e+f x)}{\sqrt{a+b}}\right )}{a^2 f}+\frac{x (a+2 b)}{2 a^2}-\frac{\sin (e+f x) \cos (e+f x)}{2 a f} \]

[Out]

((a + 2*b)*x)/(2*a^2) - (Sqrt[b]*Sqrt[a + b]*ArcTan[(Sqrt[b]*Tan[e + f*x])/Sqrt[a + b]])/(a^2*f) - (Cos[e + f*
x]*Sin[e + f*x])/(2*a*f)

________________________________________________________________________________________

Rubi [A]  time = 0.0983991, antiderivative size = 76, normalized size of antiderivative = 1., number of steps used = 5, number of rules used = 5, integrand size = 23, \(\frac{\text{number of rules}}{\text{integrand size}}\) = 0.217, Rules used = {4132, 471, 522, 203, 205} \[ -\frac{\sqrt{b} \sqrt{a+b} \tan ^{-1}\left (\frac{\sqrt{b} \tan (e+f x)}{\sqrt{a+b}}\right )}{a^2 f}+\frac{x (a+2 b)}{2 a^2}-\frac{\sin (e+f x) \cos (e+f x)}{2 a f} \]

Antiderivative was successfully verified.

[In]

Int[Sin[e + f*x]^2/(a + b*Sec[e + f*x]^2),x]

[Out]

((a + 2*b)*x)/(2*a^2) - (Sqrt[b]*Sqrt[a + b]*ArcTan[(Sqrt[b]*Tan[e + f*x])/Sqrt[a + b]])/(a^2*f) - (Cos[e + f*
x]*Sin[e + f*x])/(2*a*f)

Rule 4132

Int[((a_) + (b_.)*sec[(e_.) + (f_.)*(x_)]^(n_))^(p_.)*sin[(e_.) + (f_.)*(x_)]^(m_), x_Symbol] :> With[{ff = Fr
eeFactors[Tan[e + f*x], x]}, Dist[ff^(m + 1)/f, Subst[Int[(x^m*ExpandToSum[a + b*(1 + ff^2*x^2)^(n/2), x]^p)/(
1 + ff^2*x^2)^(m/2 + 1), x], x, Tan[e + f*x]/ff], x]] /; FreeQ[{a, b, e, f, p}, x] && IntegerQ[m/2] && Integer
Q[n/2]

Rule 471

Int[((e_.)*(x_))^(m_.)*((a_) + (b_.)*(x_)^(n_))^(p_)*((c_) + (d_.)*(x_)^(n_))^(q_), x_Symbol] :> Simp[(e^(n -
1)*(e*x)^(m - n + 1)*(a + b*x^n)^(p + 1)*(c + d*x^n)^(q + 1))/(n*(b*c - a*d)*(p + 1)), x] - Dist[e^n/(n*(b*c -
 a*d)*(p + 1)), Int[(e*x)^(m - n)*(a + b*x^n)^(p + 1)*(c + d*x^n)^q*Simp[c*(m - n + 1) + d*(m + n*(p + q + 1)
+ 1)*x^n, x], x], x] /; FreeQ[{a, b, c, d, e, q}, x] && NeQ[b*c - a*d, 0] && IGtQ[n, 0] && LtQ[p, -1] && GeQ[n
, m - n + 1] && GtQ[m - n + 1, 0] && IntBinomialQ[a, b, c, d, e, m, n, p, q, x]

Rule 522

Int[((e_) + (f_.)*(x_)^(n_))/(((a_) + (b_.)*(x_)^(n_))*((c_) + (d_.)*(x_)^(n_))), x_Symbol] :> Dist[(b*e - a*f
)/(b*c - a*d), Int[1/(a + b*x^n), x], x] - Dist[(d*e - c*f)/(b*c - a*d), Int[1/(c + d*x^n), x], x] /; FreeQ[{a
, b, c, d, e, f, n}, x]

Rule 203

Int[((a_) + (b_.)*(x_)^2)^(-1), x_Symbol] :> Simp[(1*ArcTan[(Rt[b, 2]*x)/Rt[a, 2]])/(Rt[a, 2]*Rt[b, 2]), x] /;
 FreeQ[{a, b}, x] && PosQ[a/b] && (GtQ[a, 0] || GtQ[b, 0])

Rule 205

Int[((a_) + (b_.)*(x_)^2)^(-1), x_Symbol] :> Simp[(Rt[a/b, 2]*ArcTan[x/Rt[a/b, 2]])/a, x] /; FreeQ[{a, b}, x]
&& PosQ[a/b]

Rubi steps

\begin{align*} \int \frac{\sin ^2(e+f x)}{a+b \sec ^2(e+f x)} \, dx &=\frac{\operatorname{Subst}\left (\int \frac{x^2}{\left (1+x^2\right )^2 \left (a+b+b x^2\right )} \, dx,x,\tan (e+f x)\right )}{f}\\ &=-\frac{\cos (e+f x) \sin (e+f x)}{2 a f}+\frac{\operatorname{Subst}\left (\int \frac{a+b-b x^2}{\left (1+x^2\right ) \left (a+b+b x^2\right )} \, dx,x,\tan (e+f x)\right )}{2 a f}\\ &=-\frac{\cos (e+f x) \sin (e+f x)}{2 a f}-\frac{(b (a+b)) \operatorname{Subst}\left (\int \frac{1}{a+b+b x^2} \, dx,x,\tan (e+f x)\right )}{a^2 f}+\frac{(a+2 b) \operatorname{Subst}\left (\int \frac{1}{1+x^2} \, dx,x,\tan (e+f x)\right )}{2 a^2 f}\\ &=\frac{(a+2 b) x}{2 a^2}-\frac{\sqrt{b} \sqrt{a+b} \tan ^{-1}\left (\frac{\sqrt{b} \tan (e+f x)}{\sqrt{a+b}}\right )}{a^2 f}-\frac{\cos (e+f x) \sin (e+f x)}{2 a f}\\ \end{align*}

Mathematica [C]  time = 0.89639, size = 245, normalized size = 3.22 \[ \frac{\sec ^2(e+f x) (a \cos (2 (e+f x))+a+2 b) \left (\frac{\tan ^{-1}\left (\frac{\sqrt{b} \tan (e+f x)}{\sqrt{a+b}}\right )}{\sqrt{b} f \sqrt{a+b}}-\frac{-\frac{\left (a^2+8 a b+8 b^2\right ) (\cos (2 e)-i \sin (2 e)) \tan ^{-1}\left (\frac{(\cos (2 e)-i \sin (2 e)) \sec (f x) (a \sin (2 e+f x)-(a+2 b) \sin (f x))}{2 \sqrt{a+b} \sqrt{b (\cos (e)-i \sin (e))^4}}\right )}{f \sqrt{a+b} \sqrt{b (\cos (e)-i \sin (e))^4}}-4 x (a+2 b)+\frac{2 a \sin (2 e) \cos (2 f x)}{f}+\frac{2 a \cos (2 e) \sin (2 f x)}{f}}{a^2}\right )}{16 \left (a+b \sec ^2(e+f x)\right )} \]

Antiderivative was successfully verified.

[In]

Integrate[Sin[e + f*x]^2/(a + b*Sec[e + f*x]^2),x]

[Out]

((a + 2*b + a*Cos[2*(e + f*x)])*Sec[e + f*x]^2*(ArcTan[(Sqrt[b]*Tan[e + f*x])/Sqrt[a + b]]/(Sqrt[b]*Sqrt[a + b
]*f) - (-4*(a + 2*b)*x - ((a^2 + 8*a*b + 8*b^2)*ArcTan[(Sec[f*x]*(Cos[2*e] - I*Sin[2*e])*(-((a + 2*b)*Sin[f*x]
) + a*Sin[2*e + f*x]))/(2*Sqrt[a + b]*Sqrt[b*(Cos[e] - I*Sin[e])^4])]*(Cos[2*e] - I*Sin[2*e]))/(Sqrt[a + b]*f*
Sqrt[b*(Cos[e] - I*Sin[e])^4]) + (2*a*Cos[2*f*x]*Sin[2*e])/f + (2*a*Cos[2*e]*Sin[2*f*x])/f)/a^2))/(16*(a + b*S
ec[e + f*x]^2))

________________________________________________________________________________________

Maple [A]  time = 0.085, size = 124, normalized size = 1.6 \begin{align*} -{\frac{\tan \left ( fx+e \right ) }{2\,fa \left ( \left ( \tan \left ( fx+e \right ) \right ) ^{2}+1 \right ) }}+{\frac{\arctan \left ( \tan \left ( fx+e \right ) \right ) }{2\,fa}}+{\frac{\arctan \left ( \tan \left ( fx+e \right ) \right ) b}{f{a}^{2}}}-{\frac{b}{fa}\arctan \left ({\tan \left ( fx+e \right ) b{\frac{1}{\sqrt{ \left ( a+b \right ) b}}}} \right ){\frac{1}{\sqrt{ \left ( a+b \right ) b}}}}-{\frac{{b}^{2}}{f{a}^{2}}\arctan \left ({\tan \left ( fx+e \right ) b{\frac{1}{\sqrt{ \left ( a+b \right ) b}}}} \right ){\frac{1}{\sqrt{ \left ( a+b \right ) b}}}} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

int(sin(f*x+e)^2/(a+b*sec(f*x+e)^2),x)

[Out]

-1/2/f/a*tan(f*x+e)/(tan(f*x+e)^2+1)+1/2/f/a*arctan(tan(f*x+e))+1/f/a^2*arctan(tan(f*x+e))*b-1/f*b/a/((a+b)*b)
^(1/2)*arctan(tan(f*x+e)*b/((a+b)*b)^(1/2))-1/f*b^2/a^2/((a+b)*b)^(1/2)*arctan(tan(f*x+e)*b/((a+b)*b)^(1/2))

________________________________________________________________________________________

Maxima [F(-2)]  time = 0., size = 0, normalized size = 0. \begin{align*} \text{Exception raised: ValueError} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(sin(f*x+e)^2/(a+b*sec(f*x+e)^2),x, algorithm="maxima")

[Out]

Exception raised: ValueError

________________________________________________________________________________________

Fricas [A]  time = 0.563316, size = 625, normalized size = 8.22 \begin{align*} \left [\frac{2 \,{\left (a + 2 \, b\right )} f x - 2 \, a \cos \left (f x + e\right ) \sin \left (f x + e\right ) + \sqrt{-a b - b^{2}} \log \left (\frac{{\left (a^{2} + 8 \, a b + 8 \, b^{2}\right )} \cos \left (f x + e\right )^{4} - 2 \,{\left (3 \, a b + 4 \, b^{2}\right )} \cos \left (f x + e\right )^{2} + 4 \,{\left ({\left (a + 2 \, b\right )} \cos \left (f x + e\right )^{3} - b \cos \left (f x + e\right )\right )} \sqrt{-a b - b^{2}} \sin \left (f x + e\right ) + b^{2}}{a^{2} \cos \left (f x + e\right )^{4} + 2 \, a b \cos \left (f x + e\right )^{2} + b^{2}}\right )}{4 \, a^{2} f}, \frac{{\left (a + 2 \, b\right )} f x - a \cos \left (f x + e\right ) \sin \left (f x + e\right ) + \sqrt{a b + b^{2}} \arctan \left (\frac{{\left (a + 2 \, b\right )} \cos \left (f x + e\right )^{2} - b}{2 \, \sqrt{a b + b^{2}} \cos \left (f x + e\right ) \sin \left (f x + e\right )}\right )}{2 \, a^{2} f}\right ] \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(sin(f*x+e)^2/(a+b*sec(f*x+e)^2),x, algorithm="fricas")

[Out]

[1/4*(2*(a + 2*b)*f*x - 2*a*cos(f*x + e)*sin(f*x + e) + sqrt(-a*b - b^2)*log(((a^2 + 8*a*b + 8*b^2)*cos(f*x +
e)^4 - 2*(3*a*b + 4*b^2)*cos(f*x + e)^2 + 4*((a + 2*b)*cos(f*x + e)^3 - b*cos(f*x + e))*sqrt(-a*b - b^2)*sin(f
*x + e) + b^2)/(a^2*cos(f*x + e)^4 + 2*a*b*cos(f*x + e)^2 + b^2)))/(a^2*f), 1/2*((a + 2*b)*f*x - a*cos(f*x + e
)*sin(f*x + e) + sqrt(a*b + b^2)*arctan(1/2*((a + 2*b)*cos(f*x + e)^2 - b)/(sqrt(a*b + b^2)*cos(f*x + e)*sin(f
*x + e))))/(a^2*f)]

________________________________________________________________________________________

Sympy [F]  time = 0., size = 0, normalized size = 0. \begin{align*} \int \frac{\sin ^{2}{\left (e + f x \right )}}{a + b \sec ^{2}{\left (e + f x \right )}}\, dx \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(sin(f*x+e)**2/(a+b*sec(f*x+e)**2),x)

[Out]

Integral(sin(e + f*x)**2/(a + b*sec(e + f*x)**2), x)

________________________________________________________________________________________

Giac [A]  time = 1.2368, size = 131, normalized size = 1.72 \begin{align*} \frac{\frac{{\left (f x + e\right )}{\left (a + 2 \, b\right )}}{a^{2}} - \frac{2 \,{\left (\pi \left \lfloor \frac{f x + e}{\pi } + \frac{1}{2} \right \rfloor \mathrm{sgn}\left (b\right ) + \arctan \left (\frac{b \tan \left (f x + e\right )}{\sqrt{a b + b^{2}}}\right )\right )} \sqrt{a b + b^{2}}}{a^{2}} - \frac{\tan \left (f x + e\right )}{{\left (\tan \left (f x + e\right )^{2} + 1\right )} a}}{2 \, f} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(sin(f*x+e)^2/(a+b*sec(f*x+e)^2),x, algorithm="giac")

[Out]

1/2*((f*x + e)*(a + 2*b)/a^2 - 2*(pi*floor((f*x + e)/pi + 1/2)*sgn(b) + arctan(b*tan(f*x + e)/sqrt(a*b + b^2))
)*sqrt(a*b + b^2)/a^2 - tan(f*x + e)/((tan(f*x + e)^2 + 1)*a))/f